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Abstract 

We construct a new class of non-topological solltons in renormalizable scaler 

field theories with non-linear self-interactions. For large charge Q, the soli- 

ton mass increases linearly with Q, i.e., the solltcm mass density is approxi- 

mately independent of charge. Such objects could be naturally produced in a 

phase transition in the early universe or in the decay of superconducting cosmic 

strings. 
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I. Introduction 

Non-topological solitons (hereafter, NTS’s) are solutions of classical field theories which 

are stable by virtue of a conserved Noether charge carried by fields confined to a finite 

region of space’-“. Recently, these solutions have been studied under the guise of Q 

balls’, cosmic neutrino balls*, quark nuggets’, and soliton starslo, and a scenario for 

producing them in a phase transition in the early universe has been suggested”. The 

simplest renormalizable theory with NTS solutions is an unbroken global U(1) theory of 

two coupled scalar fields. In this paper, we study the classical NTS solutions of this theory 

in detail. We will confine our discussion to NTS masses M < m$/m2 (where m is the 

mass of the scalar fields), so that gravity can be neglected. The inclusion of gravitational 

effects for large ma58 solutions has been studied elsewhere by one of us12. 

Consider the Lagrangian for a real scalr field o and a complex scalar a, 

L = gQT)2 + p,q2 - iY(pI,u). (1) 

The most general interaction invariant under the discrete symmetry o -+ -o and the 

global U(1) symmetry @ -P e’O@ is 

U(I@I,o) = i(02 - a;)2 + mg.*p12 + g21@14 + 40 --@W (2) 

We are interested in the case ui > 0, so that the discrete symmetry is spontaneously 

broken in the ground state, < (I >= fuo. Although this leads to the familiar domain 

wall problemr3 (if oe > lMeV), we assume this can be circumvented, e.g., by adding 

explicit discrete symmetry-breaking term&b. (Since these terms can be very small, we 

neglect them in our analysis.) Alternatively, we may consider o as the real component of 

a complex field whose vacuum expectation value breaks a global U(I)’ symmetry; such a 

theory has no stable domain walls, but may have stable vortices (cosmic strings). In either 

case, the U(1) symmetry carried by @ is unbroken, so there is a conserved current 

Jp = -i(**a,@ - w$O’) (3) 
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and an associated conserved charge 

Q = / d3rJo. 

(The conserved charge stabilizes the NTS against decay.) In vacuum, the particle masses 

are given by 

rnz = 2X4, m; = rn& + m;,. (5) 

Spherically symmetric NTS solutions for the theory of Eqns. (l-2) were first studied 

by Friedberg, Lee and Sirlin3 for the special case maa = g = 0. For large Q, they are 

characterized by an interior “false vacuum” region where o N 0, surrounded by a thin 

domain wall where o rapidly approaches its ground state value o = oo. In the NTS 

interior, the potential energy density in o is balanced by the pressure of the massless @ 

charges, which are confined by the mass gap - ma, at the domain wall. 

Here, we consider a more general class of solutions. In particular, we show below 

that inclusion of the repulsive l@l4 self-interaction completely changes the behavior of 

the NT%, altering the mass-radius and mass-charge relations. In the next Section we 

discuss approximate analytic NTS solutions, valid for large Q. In Section III, we construct 

numerical solutions, which are useful for displaying the behavior at small charge. We 

consider the spectrum of NTS excitations (phonons and particles) in section IV. In the 

Conclusion, we speculate on the place of NTS’s in particle physics models and briefly 

outline how such objects might be produced in the early universe. 

II. Analytic NTS Solutions 

From Eqns. (3-4), a classical solution @(F, t) must be time-dependent for the system 

to have non-zero charge. The lowest energy solutions are of the spherically symmetric 

formlm4 

a(?,,) = 
eiwtp(r) 

45 ’ 
u(F, t) = u(r). 
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It proves convenient to define the resealed field variables, 

6 = ‘p, 
00 

i$==, 
00 

spatial coordinate, 

y’ = gu& 

ma.sseS 
- - 

m, _ mm fi@, 5 1 --=-=-=- 
ma maa mcp, w PJO ’ 

and coupling constant, 

i=“=c$. 
g* 

The energy functionai for the solution (6) can then be written 

where 
1 

fi(&C) = ,(i?z~o + 
-4 - 

fiir2,,52)$52 + 5 + $52 - 1)2 

is the resealed potential. The soiiton charge is 

dyy2@ e 2 
92’ 

The resealed field equations are 

(7) 

(‘3) 

02) 

(13) 

041 

The method of constructing NTS solutions is, in principle, straightforward: they are 

uniquely determined by specifying the parameters CZI, r’fa~a, +a@,, and i, and by imposing 

the boundary conditions (i(y) -+ 0, C(y) +lasy+w,andd~/dy,d~?/dy+Oasy+O. 

One then solves Eqns. (13-14) subject to the constraint that k, the resealed NTS mass, is 
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minimized; this also f&s the soliton charge 6. We note that each such solution actually 

yields a two-parameter family of NTS’s, since g and au have been scaled out. 

To gain insight into the nature of the NTS solutions, one can think of Eqns. (13) 

and (14) as the equations of motion of a particle rolling in a two-dimentional potential 

V,,,(+5,5), with “space coordinates” ($,c) and ‘%ime coordinate” y. The particle is 

subject to a friction force which varies as y -l. The effective potential for this mechanical 

analogy is 

V,f,(@,l?) = +r12d2 - q+,g (15) 

and is shown in Fig. 1 for a particular choice of parameters. At y = 0, the NTS center, the 

particle starts at rest, while at late “times”, y + 00 (Le., far outside the NTS), it must 

approach the vacuum state 5 = 1,G = 0 on the ridge of the potential. Since the particle 

rolls with friction, it must start out at a point higher on the potential saddle, where 8 < 1, 

G > 0. Clearly, then, a necessary condition for the existence of a solution is 

m=V,ff(C,4 2 V,ff(O, 1) = 0. (1‘31 

Suppose this condition is true for some choice of the parameters, and then imagine 

decreasing 15 while keeping the masses and couplings fixed. From Eqn. (15), the inequality 

(16) then approaches equality so that, for a solution to exist, the friction term must 

become negligible. But approximate solutions in which the friction term can be consistently 

dropped are easy to construct. They are of the form 

G,(Y) = 2 ,' ,";y' 
I 

- 

- 
6(y) e y 

1 ' 
' ,";; 

Here, the particle stays close to its initial position (&, c-c) until a large time, y = Y, when 

it suddenly rolls down the potential and asymptotically comes to rest at the vacuum state. 

For the ansatz (17), the friction terms y-‘d@/dy, y-l&/dy would only be appreciable 
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where the field gradients are large, at y - Y; however, if Y is sufficiently large, these 

terms are suppressed. 

The solution above describes large, thin-walled solitons of physical radius R = Y/go,-,, 

with negligible surface energy. We call these large Q solitons “bag” solutions by analogy 

with hadron models. One feature of these bag solutions should be emphasized: by con- 

struction [Eqns. (S-lo)], they only exist for g # 0, i.e., for non-zero Ial4 coupling, To see 

this, suppose we instead define a different coordinate resealing Z = oo?, and correspond- 

ingly define resealed parameters r%~~i, ma,,, ti, and 1, obtained by setting g = 1 in Eqns. 

(9) and (10). Then Eqn. (13) becomes 

d2G - 
--& + ig + (02 - “g,*)$ = $qi&G2 + g2$z2) (18) 

In the limit g + 0, the solution (17a) becomes inconsistent. Rather, for g = 0 and 

5 = SC = const. Eqn. (18) is just the linear equation for spherical waves, with solution3 

$5 = %sin (rii2 - T& - r74;r,2)1/2z . 
2 [ 1 (19) 

For large Q, it thus turns out that, unless g is very small, g < Q-‘j4, the solutions with 

non-zero g are qualitatively different from those with g = 0. In particular, at large Q, for 

g = 0, the central amplitude & grows as a power of Q while, for g # 0, GC approaches 

a constant, independent of Q (see below). This arises because the g21@14 contribution to 

the NTS energy density suppresses the amplitude of a. We will compare the cases g = 0, 

g # 0 more fully in our numerical work below. 

Inserting the ansatz (17) in Eqns. (11) and (12), we find the resealed charge 

(20) 

and NTS mass 

A2 = $Y3{ ;cJ2g,2 + fi(&, &)}, 
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Using Eqn. (20) to eliminate 6, Eqn. (21) can be rewritten 

Q2 &f=- 
2v$i7 

+ ~‘(c&,&), (22) 

where p = qY3 is the resealed NTS volume. Minimizing the energy with respect to c at 

fixed charge gives 

If we minimize the mass 6 (at fixed 6) with respect to & and CC, we obtain 

5, = 0, f& = p/4, 

so that pz = Xoi/g2. Thus, the NTS energy is 

gf = @g/2 + &4*)1/2 = Goz, 

(24) 

(25) 

or 

M = woQ = Q(X’/2go; + m;a)‘/2. 

For Eqn. (23), the NTS charge is 

2 Q = wov~cv, 

(261 

(27) 

so the mass-radius relation is 

M = I&&’ = (ACT, + 
X’/%32& 

O @“)V, 
9 

i.e., large charge NTS’s have approximately constant density, p = w,“pz. We note that 

these relations, i.e., M w Q, R - Q1f3, are very different from the “free” case g = rnag = 0 

treated in Ref. 3, where M - Q314, R - Q114. In particular, the solutions displayed above 

have a minimum frequency, w -+ wo as Q -+ 00, while “free” solitons have u) = r/R - 

Q-‘14. For the self-interacting theory, the NTS solutions are very akin to Q-balls’. 
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Non-topological solitons are quantum-mechanically stable if they are the lowest energy 

configuration of fixed charge. Using Eqn. (S), the stability conditions are 

M(Q) < Q(m2,, + &)1’2 (29) 

and 

d2M <O 
J@ . 

(30) 

Eqn. (29) ensures stability against decay into free @ particles, while Eqn. (30) expresses 

stability against fission into smaller soliton fragments. 

For large Q, the stability condition (29) becomes [from (26)] 

gx1/2 2 2 
=O < ma,, (31) 

independent of the =baren mass maa. To check stability against fission, we would need 

to include the surface terms neglected above. This is easily done: treated perturbatively, 

the surface energy 4?rR2~ (where p is the surface energy per unit area) contributes a term 

- Q213 to the NTS mass, and therefore d2M/dQ2 < 0. Thus, the binding energy per unit 

charge increases monotonically with Q, and large Q NTS’s do not fission spontaneously. 

The addition of the surface energy also implies that the stability bound (29) is violated 

at sufficiently small charge, i.e., there exists a minimum charge Q,,,, above which NTS’s 

are absolutely stable. Generally, for Q - Q,.,,in the surface terms cannot be treated as 

perturbation, so we defer discussion of this point to the numerical solutions below. 

III. Numerical NTS Solutions 

To construct solutions at arbitrary Q, we have numerically solved Eqns. (13) and (14) 

subject to the boundary conditions noted in the previous Section. The program uses the 

parameters 6, &a~, 7%~~ and i as inputs and returns G and Q as outputs. It is useful 

to write the energy functional as 

ii=&+&+&, (32) 
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where the gradient energy 

&=47r 
J [ 

y2dy ;(a,@)2 + ;(a,~+)~ 

the ‘potential” energy 

i?:p=4?r J [ y2dy 
62@2 

@,;r) - 2 1 
and the Yrumber” energy 

(33) 

RN = 4x J y2dyG2G2 = t3j. (35) 

For the analytic solutions of the previous Section, 2 c- .??M. More generally, one can 

show that the NTS solutions must satisfy a virial theorem,3 

(3’3) 

This relation is used to check the accuracy of the numerical solutions: the program iterates 

from a trial solution until the quantity 

Ep + ;I?& 

@P 
(37) 

is sufficiently small, typically less than 10e4 or so. 

In Fig. 2, we show two NTS solutions with parameters 61~4, = 0, rira, = 1, i = 

l/9 (assuming g # 0). The solid curves show G(y), C(y) for G2 = 0.38, with charge 

6 = 3.1 x lo4 and mass ,6I = 2.0 x 104; in this case, (Ilo” = i1i2 = 0.33, so thii is a bag 

solution with 6 u tiru and fi E 64. The dashed curves show the solution for C2 = 0.8, 

which has a charge 6 = 74.5 and mass G = 72.2. For this case, the potential and surface 

energies are important and, as one sees from the figure, the solution is not at all bag-like. 

In particular, here C(O) = 0.5 instead of zero. As tC is further increased, eventually we 

reach a charge arnh, where the stability condition (29) breaks down. For the parameters 

above, thii occurs for G2 = 0.92, with Grn;n = 45.1 and h&,, = 45.0. 
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It is interesting to consider what happens for Q < Q,,,i,,. Although such NTS’s have 

positive binding energy, and are thus quantum mechanically unstable, classical solutions 

still exist. As G2 is increased from 0.92 (its value at Qmli,), the charge and mass first 

continue to drop, but then G(Q) reaches a cusp at Qcrit = 39.4, merit = 39.5, W:r;, = 0.97. 

For fi > ~crit, the mass and charge grow with increasing rit and, as G approaches t?r~, = 1 

from below, the NTS energy approaches the free particle energy I&ree = rk&$ = Q. 

Thus, a plot of G(Q) would show two branches, the upper one with 11, > rGCrit, the lower 

with G < Gc,.n, which join at Q,,.,in. (Similar behavior at small Q was found in Ref 3.) 

Presumably, the upper branch solutions decay either to the lower branch or to free @ 

particles. 

For comparison, in Fig. 3 we show NTS solutions with the same parameters as above, 

but with g = 0, i.e., we have maa = 0, ma0 = ma,/u,, = 1, x = X = l/9, and we plot 

G(z), C(z) where z = oar [see discussion around Eqn. (18)]. The solid curves are for the 

case ti2 = w”/ui = 0.038, Q = Q = 9.6 x 103, ti = M/q = 2.5 x 103, while the dashed 

curves are for w2 = 0.6, Q = 64.1, A? = 59.4. It is clear that these solutions are far from 

bags, but are instead well approximated by the solutions (17b), (19) for large Q. For these 

parameters, the minimum charge for stability is Q,, = 34.5, ti,,,i,, = 34.5, which occurs 

at ti2 = 0.875. TO see the effect of the g21@14 term graphically, we plot the soliton mass 

c(a) as a function of charge Q(Q) for the case g # O(g = 0), in Fig. 4. To compare the 

curves, we can take g = 1 for the model with non-zero g, so that we are plotting M/q vs. 

Q in both cases. As expected, at large charge Q, the 1@l4 term increases the NTS mass. 

(We have displayed only the lower branch solutions.) 

To summarize, for the self-interacting theory, stable NTS solutions exist over the fre- 

quency range 

(x’/2gu; + m&)1/2 < w < (m& + m&p2 (38) 

and for charges greater than a minimumcharge Qirrla which depends on coupling constants. 
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IV. Soliton Excitations 

The phenomenology of non-topological solitons is determined in part by the small 

fluctuations about the NTS ground state. For example, at finite temperature, these flue- 

tuations make an important contribution to the free energy of the NTS and are therefore 

crucial in determining the phase diagram of the theory. These excitations are of three 

types: i) (I particle and @ particle-antiparticle excitations, with energies proportional to 

the (a, a) masses in the NTS interior; ii) sound waves (phonons), with energies proportional 

to R-‘; iii) surface waves. In this Section, we compute the spectrum of NTS fluctuations 

of types (i) and (ii) for large Q. For simplicity, we shall focus on the case ma* = 0. 

To study small amplitude fluctuations, we define the perturbed variables, 

6 = u(r) + Su(F, t), 

( 
coswt -sin& 

’ = 5 sin&s cmwt 1 ” 

where 

I++= ( v(r) + hl(r7 t1 

> 6v2(r;t) . 

(39) 

(40) 

(41) 

Here, u(r) and rp(r) are the unperturbed NTS solutions of Eqn. (6). Linearizing in 

60,&r, 6~2 and using the unperturbed equations of motion for the background solution 

( g-a2.a2 > 60 + a&r = 0 

a360 + $-e2+q+a4 6~l--%$6~g=O 
> 

2+rpl+ 
a2 
a,z - a2 + al 

> 
6~2 = 0. 

Here, w is the frequency of the background soliton, and ar,...,aq are functions of the 

unperturbed solution, 

al = mi 2 -u + g2p2 - Id2 

4 
(45) 
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a2 = 4%7 2 
-(o + X(02 - uo') + 2x02 

4 

2m2 
a3 = + v 

00 

a4 = 2g2p2. (48) 

For arbitrary charge, one can in principle solve Eqns. (42-44) for the normal modes 

of the NTS; the solutions involve spherical Bessel functions and Legendre polynomials, 

with suitable boundary conditions imposed at the NTS surface. We shall instead consider 

modes of the large Q bags of Section II. 

Using the bag solution (24), we have al = as = 0, and 

a4 = 2w,2 = 2gX’/2u,2. (50) 

Thus, in the large Q limit, the 6u and 6~ modes decouple. Furthermore, since we are 

considering the limit of infinite NTS radius, we can approximate the normal modes with 

plane waves of the form c?(~O~-“~). For th e 6 (o modes, we then find a dispersion relation 

of the form 

k; = k2 + 3~; & wo(4k2 + CIU;)‘/~, (51) 

where k2 = li12. At low momentum, i.e., k Q: wo, the lower (acoustic) branch gives 

ki = k2/3, which corresponds to the sound speed of a relativistic medium, ez = l/3. The 

upper (optical) branch corresponds to @ particle-antiparticle excitations, with rest energy 

k. u &wo. 

For the 6u modes, in the bag limit the mode equation (42) is just the free Klein- 

Gordon equation with mass m = 6 [see Eqn. (49)]. We note that the stability condition 

(31) implies a2 > 0; in other words, as one would expect, NTS stability corresponds to 

non-tachyonic 6u fluctuations. 
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V. Conclusion 

Although we have studied the simplest theory containing non-topological solitons, 

many features of the solutions discussed here are universal. For example, for large charge, 

we found that scalar NTS’s have approximately constant mass density, i.e., msss propor- 

tional to their charge. This scaling holds whenever the charged field, be it fermion or 

boson, has a reduced mass in a region of non-zero vacuum energy. Thus, the linear scaling 

of mass with charge is valid for Q-balls, strange nuggets, bag models of hadrons, etc. 

Non-topological solitons can arise in any particle theory in which the lightest field 

carrying a global additively conserved quantum number gets a mass via a Higgs-type 

mechanism. Many extensions of the standard model, such as technicolor, grand unified 

theories,~ left-right symmetric theories and majoron models may have such a structure. 

Candidates for the requisite charged field include the lightest technibaryon and a msasive 

neutrino. Whether the NTS solutions in such theories are actually stable depends only on 

ratios of coupling constants. Generally, one finds stability above some minimum charge 

Q,,,n, (if at all); for theories with small coupling constants (of order unity), Qmn, typically 

lies in the range between one and lo4 or so. For Qari, 5 1, we have the intriguing possibility 

that NTS’s are the lowest lying solutions in the particle spectrum. 

In passing, let us note that NTS’s may also arise in theories with a multiplicatiucly 

conserved charge. An interesting example is supersymmetry, where Q is identified with R- 

parity. If the lightest supersymmetric particle is a scalar neutrino (or a Majorana fermion 

such as the photino), the associated NTS’s would be qualitatively similar to those described 

here. However, since R-parity is multiplicative, sneutrino solitons with R 2 2 can decay 

by self-annihilation. Supersymmetric NTS’s would only survive if the NTS frequency w is 

below the msss threshold of the lightest LSP annihilation channel or if A&,, < 1. 

How might such objects come into existence? During a phase transition in the early 

universe, NTS’s may condense due to charge fluctuations or due to a charge asymmetry 
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(i.e., if the universe carries a net Q). l1 To study this process in detail, we are at present 

constructing NTS solutions at finite temperature. l5 Once formed, however, NTS’s are gen- 

erally vulnerable to evaporation l6 above a critical temperature at which they become the 

lowest free energy state. Whether they survive this evaporation phase is model-dependent. 

Another mechanism for NTS formation is the decay of cosmic strings. Suppose u is 

the real component of a complex field in a U(1) x U(1)’ theory. For certain choices of 

parameters, this theory is known to have vortex solutions which carry both current and 

charge.” In some cases, the resulting ‘vortons may evolve to a state in which the charged 

condensate is separated from the current; when thii happens, it is likely that a stable NTS 

is formed. Since cosmic strings can be efficiently produced in phase transitions,r8 NTS’s 

may be produced in abundance. 
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Figure Captions 

1. Effective potential for the mechanical analogy, V,,,(@,Z) [Eqn.(l5)]. 

2. NTS solutions $(y),C(y), for r7aa~ = 0, Ga*, = 1, X = l/9, g # 0. Solid curves: 

Gz = 0.38, Q = 3.1 x 104. Dashed curves: G2 = 0.8, Q = 74.5. 

3. NTS solutions (c(z),C(z), for same parameters as Fig. 2, but with g = 0. Solid curves: 

a2 = 0.038,Q = 9.6 x 103. Dashed curves: a2 = O.S,Q = 64.1. 

4. NTS mass M/o0 as a function of charge Q. Dashed curve: g = 0. Solid curve: g = 1. 

Dotted curve: free particles, M = Qmcp,. 
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